
On the Scalability of Proof Carrying Code for

Software Certification?

Andrew Ireland

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh, Scotland, UK
a.ireland@hw.ac.uk

Abstract. Proof Carrying Code provides an approach to software certifi-
cation, where trust management is decentralized. The approach has been
successfully applied to relatively simple properties. Here we consider the
scalability of the approach when more comprehensive properties are consid-
ered, e.g. functional properties. We argue that tactic-based theorem proving,
and in particular proof plans, have a role to play in addressing the issue of
scalability.

1 Introduction

Within the Proof Carrying Code (PCC) paradigm [7], software certificates corre-
spond to formal proofs, i.e. a proof that a program satisfies a given safety policy.
The responsibility for proof construction lies with the code producer, while a rel-
atively light-weight proof checking process is all that is required on the consumer
side. Moreover, the consumer does not need to trust the producer or any third-
party intermediaries. As a consequence, PCC decentralizes trust management, i.e.

the trusted computing base is minimal and local to the consumer.
Initially, proofs were relatively large, given the size of code involved. Significant

progress, however, has been made in reducing the size of proofs, i.e. software cer-
tificates. In particular, an approach known as Oracle-based Proof Carrying Code

(OPCC) uses oracle strings [8] as a means of representing the minimal information
required for proof checking, i.e. the checker is only provided with information when
a choice is required. Proof tactics have also been used to reduce the size of proofs,
i.e. large proof steps defined in terms of tactics. This is known as Tactic-based

Proof Carrying Code (TPCC) [1]. Of course within TPCC, the tactic definitions are
required for proof checking, thus increasing the machinery on the consumer side.

PCC has been mainly concerned with safety properties, such as type safety and
memory management safety. The relative light-weight nature of these properties
has meant that proof construction corresponds to type inference. The need for more
comprehensive properties is widely recognized. For instance, the MOBIUS project1

has identified the need for comprehensive policies, such as functional properties,
as one of the “challenges that lie far beyond the current state-of-the-art”. Meeting
this challenge will increase the burden of proof associated with PCC, both in terms
of proof construction and communication. Below we explore these issues in more
detail.

2 Proof Construction

Extending PCC to include functional properties introduces all the complexities that
are associated with software verification, e.g. the need for code to be annotated

? The work discussed was supported in part by EPSRC grant GR/S01771.
1 MOBIUS: http://mobius.inria.fr/twiki/bin/view/Mobius.



with auxiliary assertions, such as loop invariants. The current focus on type-based
methods will need to be combined with logic-based methods. In particular, theorem
proving and program analyzers that assist with the generation of code annotations
will be required.

We believe that the technique known as proof planning [3] also has a role to
play here. Proof planning is a computer-based technique for automating the search
for proofs. At the core of the technique are high-level proof outlines, known as
proof plans. A proof plan embodies a generic tactic and is typically hierarchical in
structure. Proof planning is the process by which a customized tactic is constructed
for a given conjecture. The generic nature of a proof plan makes for a robust style of
reasoning, i.e. proof planning can deal with changes to a conjecture, as long as the
changes fall within the scope of the given proof plan. The use of proof planning to
support proof construction would therefore represent a natural extension to TPCC.
In terms of program analysis, proof planning has also demonstrated its value through
the NuSPADE project2, where proof planning was investigated within the context
of verifying software written in SPARK [2]. In particular, proof-failure analysis, a
key feature of proof planning, was used in conjunction with program analysis to
guide the generation of loop invariants [4–6].

3 Proof Communication

As noted above, OPCC and TPCC have achieved significant reductions in the size
of proofs. It is unclear, however, whether or not these approaches will scale to meet
the challenges associated with more comprehensive properties. Here we propose an
alternative approach. Instead of communicating a proof, or how to construct a proof
(via a tactic or proof oracle), we propose communicating what knowledge is required
in order for the consumer to re-construct a producer’s proof. What we will refer to
as Proof Plan Carrying Code (PPCC), can be viewed as an extension of TPCC.
To achieve PPCC, we envisage the notion of a Proof Planning Oracle (PPO) , i.e.

information on which proof plans and theories were used in planning a particular
conjecture or class of conjectures. We see PPOs as an optional input/output to the
existing proof planning framework. That is, the producer will use a proof planner
to generate a PPO which is then used to constrain proof planning on the consumer
side.

While PPOs will significantly reduce the size of software certificates, it will also
significantly increase the burden on the code consumer. Firstly, the code consumer
will require access to the proof plan and theory repositories referenced by the PPO
– introducing the problem of managing distributed repositories. Secondly, the code
consumer will be required to run a proof planner as well as a proof checker – in-
creasing the consumer’s computational overhead. Note however that the PPO will
significantly reduce the search involved in re-constructing proofs on the consumer
side. As is the case with TPCC, this additional overhead will exclude on-device
proof checking. For many applications this would be a show-stopper, e.g. smart
card applications with minimal resources. However, we believe that such applica-
tions will also rule-out on-device proof checking with respect to the more compre-
hensive properties that are currently being considered. So where on-device checking
is not essential, but where comprehensive properties are mandatory, then PPCC
may provide a practical approach.

2 NuSPADE: http://www.macs.hw.ac.uk/nuspade.

2



4 Conclusion

PCC has been applied successfully to relatively simple properties. Targeting more
comprehensive properties raises questions about the scalability of current approaches.
We have argued that proof plans have a role to play in addressing the scalability of
proof construction. In terms of representing software certificates, we have proposed
the use of proof planning oracles as a technique for reducing the size of formal
proofs.

References

1. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile resource
guarantees for smart devices. In Proc. Intl. Workshop on Construction and Analysis of
Safe, Secure and Interoperable Smart Devices (CASSIS 2004), volume 3362 of Lecture
Notes in Computer Science, pages 1–26. Springer, 2005.

2. J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley, 2003.

3. A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and R. Over-
beek, editors, 9th International Conference on Automated Deduction, pages 111–120.
Springer-Verlag, 1988. Longer version available from Edinburgh as DAI Research Paper
No. 349.

4. B.J. Ellis and A. Ireland. Automation for exception freedom proofs. In Proceedings
of the 18th IEEE International Conference on Automated Software Engineering, pages
343–346. IEEE Computer Society, 2003. Also available from the School of Mathematical
and Computer Sciences, Heriot-Watt University, as Technical Report HW-MACS-TR-
0010.

5. B.J. Ellis and A. Ireland. An integration of program analysis and automated theorem
proving. In E.A. Boiten, J. Derrick, and G. Smith, editors, Proceedings of 4th Inter-
national Conference on Integrated Formal Methods (IFM-04), volume 2999 of Lecture
Notes in Computer Science, pages 67–86. Springer Verlag, 2004. Also available from the
School of Mathematical and Computer Sciences, Heriot-Watt University, as Technical
Report HW-MACS-TR-0014.

6. A. Ireland, B.J. Ellis, A. Cook, R. Chapman, and J. Barnes. An integrated approach
to program reasoning. Technical Report HW-MACS-TR-0027, School of Mathematical
and Computer Sciences, Heriot-Watt University, 2004.

7. G. C. Necula. Proof-carrying code. In Conference Record of POPL ’97: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
106–119, Paris, France, jan 1997.

8. G.C. Necula and S.P. Rahul. Oracle-based checking of untrusted software. In POPL:
28th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
2001.

3


